
Introduction
This CTF, "Feed The Magical Goat" is a Reverse Engineering challenge as part of the Battelle
CTF challenges on https://www.battelle.org/the-challenge.

The CTF has the description of "Once upon a time, there was a little reverse engineer who
found a special bell. When the bell was struck, they say a magical billy goat appeared looking
for food. Everyone knows billy goats will eat anything, but this is all the little reverse engineer
had lying around."

Start
When you click the download button on the page you get a 'billygoat_executable.zip', after
unzipping you receive the 'billygoat' file.

First I run the file bash command to see what type of file it is and see that it is a "ELF 32-bit
LSB executable" so I know that I can open it in Ghidra.

First I try to just run the executable and I receive an introduction dialogue and an outro it
seems.

Main
After opening in Ghidra and looking in the main function I see the following C code which calls
the give_offering with a string literal

┌─[kesifan@parrot]─[~/Documents/CTF/Battelle/billy]

└──╼ $./billygoat

You ring the chow bell...

OH NO, here comes Billygoat!!

Goats have microscopic 'hooks' on their hooves that give them unmatched

traction.

Actually no they don't, but that would be awesome!

Billygoat looks around... Angr fills his eyes.

Billygoat does a backflip and vanishes.

 puts("You ring the chow bell...");

 sleep(2);

 puts("OH NO, here comes Billygoat!!");

 sleep(2);

https://www.battelle.org/the-challenge

give_offering
The following code from the give_offering function takes the string literal "chow.down" and
attempts to open it as a file, giving an error message if it fails.

The following code then shows that it allocates a buffer of 16 bytes then attempts to read the
first 16 bytes from "chow.down" and assign it to that buffer, then closes the file

There is more code but its not important, now we go back to main.

Buffer reading
Right after calling give_offering, the main function splits the 16 bytes into 4 local variables.

 print_intro();

 sleep(2);

 __ptr = (undefined4 *)give_offering("chow.down");

char * give_offering(char *param_1)

{

 int __fd;

 char *__buf;

 ssize_t sVar1;

 __fd = open(param_1,0);

 if (__fd == -1) {

 puts("Billygoat looks around... Angr fills his eyes.");

 close(-1);

 unlink(binName);

 print_outro();

 /* WARNING: Subroutine does not return */

 exit(1);

 }

 __buf = (char *)malloc(0x11);

 sVar1 = read(__fd,__buf,0x10);

 close(__fd);

 local_34 = *__ptr;

 local_30 = __ptr[1];

 local_2c = __ptr[2];

 local_28 = __ptr[3];

The main function then calls 4 different functions, each with one of the variables.

Each of these functions check each byte, so the first one, fill_rumen checks the first 4 bytes and
checks to see if it matches the functions 4 bytes, for example.

fill_rumen checks for ",", ";", ".", "u"
fill_reticulum checks for "P", "@", "h", "_"
fill_omasum checks for "|", "p", "n", "W"
fill_abomasum checks for "0x48", "B", "c", "r"

Reading the code further shows that if all this matches, you get the flag.

 iVar1 = fill_rumen(&local_34);

 if (iVar1 != 0) {

 iVar1 = fill_reticulum(&local_30);

 if (iVar1 != 0) {

 iVar1 = fill_omasum(&local_2c);

 if (iVar1 != 0) {

 iVar1 = fill_abomasum(&local_28);

 if (iVar1 != 0) {

 iVar1 = fill_rumen(&local_34);

 if (iVar1 != 0) {

 iVar1 = fill_reticulum(&local_30);

 if (iVar1 != 0) {

 iVar1 = fill_omasum(&local_2c);

 if (iVar1 != 0) {

 iVar1 = fill_abomasum(&local_28);

 if (iVar1 != 0) {

After looking up an ASCII table, 0x48 is H

 puts(

 "Billygoat looks pleased. He bows to you. Congratulations, you

are now the goat master !\n"

);

 printf("flag{%c%c%c%c_%c%c%c%c_%c%c%c%c_%c%c%c%c}\n",(int)

(char)local_34,

 (int)local_34._1_1_,(int)local_34._2_1_,

(int)local_34._3_1_,(int)(char)local_30,

 (int)local_30._1_1_,(int)local_30._2_1_,

(int)local_30._3_1_,(int)(char)local_2c,

 (int)local_2c._1_1_,(int)local_2c._2_1_,

(int)local_2c._3_1_,(int)(char)local_28,

Conclusion
I put all of the correct characters in a file called "chow.down", ran the executable with the file
and secured the flag

 (int)local_28._1_1_,(int)local_28._2_1_,

(int)local_28._3_1_);

┌─[kesifan@parrot]─[~/Documents/CTF/Battelle/billy]

└──╼ $./billygoat chow.down

You ring the chow bell...

OH NO, here comes Billygoat!!

Goats have microscopic 'hooks' on their hooves that give them unmatched

traction.

Actually no they don't, but that would be awesome!

Billygoat eats your offering...

Billygoat looks pleased. He bows to you. Congratulations, you are now the

goat master!

flag{l1vn_th4t_goat_l1f3}

